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Abstract-Analysis of mechanical contact of solids is of interest not only regarding a variety of
mechanical assemblies but also on a smaller scale such as roughness properties of surfaces and
compaction of powder particles. Indentation testing is another prominent problem in the context.
To analyse the phenomena involved is inherently difficult at application essentially due to the
presence of large strains, nonlinear material behaviour, time dependence and moving contact
boundaries, Recently, progress has been made, however, to explicitly solve basic boundary value
problems especially due to advances in computational techniques, A substantial ingredient which
facilitates solution procedures is self-similarity and it is the present purpose to explore in detail the
advantages in a general setting when this feature prevails. A viscoplastic framework is laid down
for a wide class of constitutive properties where strain-hardening plasticity, creep and also nonlinear
elasticity arise as special cases, It is then shown that when surface shapes and material properties
are modelled by homogeneous functions, associated boundary value problems posed may be reduced
to stationary ones, As a consequence, within Hertzian kinematics, relations between contact
impression and regions become independent of loading and time and the connection to loading
characteristics does not usually require a full solution of the problem. In particular it is shown that
for general head-shapes it proves efficient to use an approach where an intermediate flat die solution
serves as a basic tool also for hereditary materials. An invariant computational procedure based on
the intermediate problem is arrived at and decisive results shown to be found by simple cumulative
superposition. Illustrations are given analytically for ellipsoidal contact of Newtonian fluids and by
detailed computations for spherical indentation of viscoplastic solids for which also universal
hardness formulae are proposed. For several bodies in contact it is shown how general results may
be extracted from fundamental solutions for a half-space. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Mechanical problems of two bodies in mutual contact seem to have their origin in the
analysis oflinear elastic solids by Hertz (1882), and have since been of a central nature in
the mechanics of solids. Elasticity theory of contacts, one branch of which is often called
Hertz theory, has, after the fundamental contribution laid down, made continuous progress
accompanied by developments of mathematical techniques based on complex variables,
integral transforms and Green functions. Many of the essential results have been summa­
rized, e.g., by Galin (1953), Gladwell (1980) and Hills et al. (1993). More recent advances
contain not only linear elastic contact theories but also contributions to inelastic behaviour
of bodies, Johnson (1985), Such issues include permanent as well as time-dependent defor­
mations and stresses due to contact and are of importance, e.g., at analysis of surface
roughness and powder compaction. Indentation tests are also pertinent problems as they
aim at exploration of mechanical properties of materials by probing a local region of their
surface.

Notwithstanding their importance, complexities in inelastic contact phenomena inevi­
tably make their analytical assessment highly intractable. Several sources of nonlinearity
are present in the problems at hand like plastic or viscous material behaviour, moving
contact boundaries and frictional effects. Some of these issues also imply that the results
are history dependent and thus have to be traced incrementally.

Analytical solutions to plastic contact problems are essentially confined to slip line
theories of rigid-perfectly plastic solids with simple geometries c.f., e,g., Hill (1950). Driven
by the need for further understanding of this complicated field of mechanics, however,
more general means like finite element methods have been ambitiously applied in particular
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to analyse indentation problems. To this end, perhaps, Akyuz and Merwin (1968), Hardy
et al. (1971) and Lee et at. (1972) were the first to analyse indentation of elastic-plastic
solids under plane and axisymmetric conditions, respectively. Such numerical achievements
have had many followers and become more mature due to the progress of computational
techniques when aiming at high accuracy solutions such as recently by Edlinger et al. (1993)
and Kral et al. (1993) for indentation by spheres of strain-hardening elastic-plastic solids.
The nonlinearities present still make it a rather formidable procedure to assess accuracy
with confidence in nontrivial situations and to condense results with some generality.

When formulating contact problems with emphasis on generality it has proved advan­
tageous to draw upon similarity principles first to clarify the dependence of solutions on
governing parameters and more recently to exploit the use of computational techniques
more efficiently. In the context of linear elasticity similarity aspects have been explored for
a long time cf., e.g., Mossakovski (1963), Spence (1968, 1975), Hill and Stonlkers (1990).
When it comes to nonlinear material properties, Hill et at. (1989) gave a background to
empirical hardness formulae and proved for Brinell indentation of power law solids that
self-similarity may be applied and as a consequence that the problem of a moving boundary
may be reduced to a stationary one. With this as a basis, Hill et at. (1989) analysed the
problem in depth and besides providing a theoretical interpretation of earlier empirical
findings gave a full account of explicit results with the aid of a specially designed finite
element procedure. This investigation was, however, based on a material model with no
inherent history dependence, i.e., nonlinear elasticity or alternatively deformation theory
ofplasticity. To achieve generality, though, it is imperative that the incremental behaviour of
materials is considered at indentation. To this end, and also to devise efficient computational
techniques, an alternative procedure to use an intermediate flat die field followed by
cumulative superposition to analyse indentation of nonlinear solids by curved dies was
proposed for power law creep by Storakers and Larsson (1994). Although the idea is an
old one in case oflinear elasticity, possibly originating from Mossakovski (1963), apparently
the approach had never been tried for nonlinear solids where ordinarily superposition
principles fail to apply. The technique proved to be efficient, however, and was beneficially
employed in full to obtain highly accurate solutions at Brinell indentation also for strain­
hardening plastic solids by Biwa and Storakers (1995).

When fully inelastic behaviour is at issue the similarity strategy sketched can be a strong
alternative to computational methods applied by brute force when a moving boundary and
natural time have to be considered simultaneously. In their analysis of spherical indentation
Biwa and Storakers (1995) considered as an alternative an elastic-plastic procedure com­
putationally based on the commercial code ABAQUS (1992) in order to obtain asymptotic
results in the fully plastic range. Besides the labour involved, several sources of inaccuracy
evolved, in particular regarding imprecise determination of the moving contact boundary.
The matter has, however, been further pursued in this spirit by Ogbonna et al. (1995) where
asymptotic states have been sought in a more general case. The investigation by Ogbonna
et at. (1995) was preceeded by a similarity method proposed by Hill (1992) to analyse
spherical indentation of power law creep being reduced to a stationary problem. Hill's
procedure was based on total displacements and no explicit results were demonstrated.
Bower et al. (1993) subsequently transformed the procedure by Hill (1992) to return to an
intermediate stationary rate problem and combined it with a finite element code, ABAQUS
(1992), employing natural time as an essential variable. In the more general case of vis­
coplasticity Ogbonna et al. (1995) abandoned stationarity altogether and used a combined
strategy involving both an evolving contact region and natural time.

The aim here is to examine in detail general features of self-similarity and offer efficient
solution procedures at contact of nonlinear solids including natural time though reduced
to stationarity. The analysis will first be focused on viscoplastic behaviour in a rate for­
mulation from which classical models for plasticity and creep will emerge as special cases.
Introduction of appropriate similarity scaling to allow reduction to a fixed boundary will
result in a transformation from material history (time) dependence to spatial nonlocality.
Desired solutions may then be obtained from flat die fields followed by cumulative super­
position. To this end first a general constitutive background to inelastic material behaviour
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is briefly summarized and a general theory to analyse contact or indentation is formulated
with its particular advantages discussed. A user-friendly computational procedure is out­
lined in detail and shown to generate results of high accuracy. The proposed methodology
is first illustrated by pure analysis of ellipsoidal contact of Newtonian fluids. Detailed
computational results are then obtained for spherical indentation of viscoplastic solids and
in particular some universal hardness formulae are proposed. Finally it is shown how results
may be extended to apply to cases when several deforming bodies of contact are involved.

2. PRELIMINARIES FROM THE THEORY OF INELASTIC SOLIDS

With generality in mind some constitutive equations in the mechanical theory of
viscoplastic solids are first laid down where the background essentially originates from
articles by Hill (1956, 1987a, 1987b), Rice (1970) and Mroz (1973). In what follows, for
simplicity though not by necessity, only solids obeying an associated flow rule are considered
as the analysis to follow may be carried out accordingly for non-associated cases as well
when suitable homogeneity properties apply. First, two viscoplastic potentials, <1> and 'P,
are introduced, which generate the stress and strain rate as

(1)

respectively.
The potentials are related to each other through a dissipation function

(2)

by a Legendre transformation. Thus, if it is assumed that <1>(O"ij) is a homogeneous function
of degree (n + 1), say, then 'P(Bij) is necessarily homogeneous of degree (n + l)jn due to the
above duality nature. When normalized with respect to appropriate material parameters,
<1> and 'P depend, save for a path history, only on functions O"e(O"i) and Be(B;), respectively,
when made homogeneous of degree one with respect to their arguments. In particular, to
reflect strain-hardening material behaviour, the potentials are allowed to depend on a scalar
measure

(3)

characterizing accumulated total strain which is in general path-dependent.
Explicitly with Be as a passive parameter in the Legendre transformation the potentials

reduce to cf., e.g., Mroz (1973),

0" (0" (O"))n+ I.....( . ) = _0_ _e_'J_ -nlm
\j,O O"ir Be 1 Ben+ 0"0

and

where O"e and Be are necessarily connected by

As a consequence, eqn (1) may, in this form, be rewritten as

(4)

(5)

(6)
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(7)

(8)

respectively.
Besides the material constant 0"0' the parameters m and n can be identified as exponents

representing strain-hardening and rate-sensitivity or creep, respectively. This constitutive
framework is thus suitable to represent primary (hardening) creep or rate-dependent plastic
flow in general. In the limit when m -+ 00 nonlinear viscous flow or stationary creep is
recovered while when n -+ 00 strain-hardening plastic flow is restored.

Although the shape of the flow function 0".(0";) has so far been left arbitrary, save for
convexity, it has been implicitly assumed smooth together with its work-conjugate t.(tij)'
Based on crystalline slip the existence of potential functions as here introduced has been
discussed in depth by Rice (1970). For one thing in the time-independent plastic limit
vertices are admissible and the present framework may then be included by introducing the
notion ofa subgradient cf., e.g., Maugin (1992), such that the strain rate is contained within
a certain cone. Thus the analysis may be carried through also for nonassociated cases but
for the stated simplicity only associated flow rules are considered further.

In order not to dim the visibility no effort is made to reproduce the most general
homogeneous form ofthe function 0".(0";) for arbitrary anisotropic states. Instead, a straight­
forward quadratic function

(9)

is adopted and thus by (7)

(10)

Then by the duality properties the inverse relation may be written as

(11)

where if.ijkl is given by

and the resulting work conjugate then by (7) and (11) as

(12)

It has been tacitly assumed above that the introduced potential 'P is formally related
to total strain-rate whatever the physical origin might be. At inelastic deformation of metals
it is customary to assume that incompressibility prevails when elastic effects are insignificant
and accordingly the dual potential <I> is insensitive to the mean stress O"kk/3. The present
framework then has to be slightly modified in the spirit of Rill (1987a) with eqn (7) retained
but (8) replaced by
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(13)

Then (Je is a function of the stress deviator sij' though still being homogeneous ofdegree
one, while Be is defined over the domain Bij so as to give oBeloBkk = o.

In case of both incompressibility and isotropy the introduced measures reduce to

(14)

which are of the familiar von Mises type and will be adopted in one of the applications
below.

3. INDENTATION

3.1. Formulation of the contact problem for a half-space
The constitutive theory outlined above is general enough to analyse contact of a variety

of solid materials which are of both structural or functional use. Some familiar applications
which are of importance are shown in Fig. 1. With a self-similarity analysis in mind there

a)

c) q q

Fig. I. Contact at (a) indentation (Berkovich), (b) flattening of asperities, (c) compaction.
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Fig. 2. Contact of a curved rigid indenter and a deformable halfspace.

is reason to dwell a little on the manner of formulating relevant boundary value problems.
Small strain kinematics is to be used throughout the analysis as the contact region is
assumed small compared to any characteristic length scale inherent in the present basic
problem. It suffices then to consider two half-spaces with a local displacement boundary
condition as in Hertz theory of elastic contact. Moreover, and also akin to Hertz theory,
the problem may be made equivalent to that of a single half-space of combined material
properties impressed by a rigid punch as will be displayed in detail below. To gain first
insight and clarity though the fundamental problem of contact between a curved rigid
indentor and a flat deformable solid is analysed first.

The profile of the indenter is represented by a relation X3 = f(xl> X2) as depicted in Fig.
2 where at the origin f(O, 0) = O. Further the profile function f is assumed convex and
positively homogeneous of degree p, i.e.,

In some situations it proves convenient to use cylindrical polars, i.e.,

f= F(fJ)D(rIDY,

(15)

(16)

where D is a curvature parameter and the die angular function F(fJ) may be normalized as
F(O) = I without loss of generality.

In the employed form of headshapes it may be noted in passing that several familiar
cases of importance are recognized. Thus, in the axisymmetric case when F(fJ) == I the case
p = I corresponds to a cone and p = 2 to a sphere of curvature 21D. In nonsymmetric cases
such as pyramidal indentation with, e.g., a square cross section (Vickers), the shape is
defined by p = I and

F(fJ) = cos fJ, 0 ~ fJ ::;;; nl4 (17)

for a necessary and sufficient interval of definition with regard to symmetry. Likewise for
a triangular cross section (Berkovich), Fig. la, the corresponding symmetry interval is
0::;;; fJ ~ n13.

Returning now to the boundary value problem it is assumed that the indenter is rigid
and pressed normally onto a half-space, occupying X3 ~ 0, according to Fig. 2. Then, by
the imposed displacement h, the local boundary conditions may be formulated as
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where aVe is the so far unknown contact region which must be determined as part of the
solution. Explicitly, if the contour is expressed as r = C(O), the evolution of C(O), as a
function of h, Fig. 2, is to be determined.

It should be emphasized that, by the homogeneous boundary conditions in (18),
frictionless indentation is prescribed. The significance of this assumption in practice, of
course, varies with the circumstances. It is adopted here for the single purpose to later
demonstrate explicit solutions. In the present self-similarity framework, however, there are
no formal difficulties to accommodate cases of adhesion, Spence (1968), and Coulomb
friction, Borodich (1993), as studied by these writers for linear and nonlinear elasticity,
respectively. Further it has so far been tacitly assumed that linear kinematics applies. In
particular, in the case of sharp indenters, however, large deformations may be appreciable
and should deserve attention especially as the homogeneity properties prescribed above
may be relaxed for standard profiles. Some details of these issues have been discussed by
Bower et al. (1993) for power-law creep but more general cases of nonlinear material
behaviour and indenter profiles will be left for further exploration.

Posing the boundary value problem as of rate type, the field equations together with
the boundary conditions may now be summarized as

(19)

(20)

(21)

(22)

r> C(O) (23)

where ee and ee are defined by eqns (12) and (3), respectively. Equations (19), (20) and (21)
correspond to compatibility, equilibrium and constitutive law, in this order and in obvious
notation. The boundary conditions (23) correspond to the free surface and the remaining
remote conditions have to be considered separately in every individual situation.

3.2. Self-similarity and the reduced problem
Essentially when predicting self-similarity to apply in the present setting the resulting

contact contour must be invariant with respect to natural time and expand in a spatially
self-similar way. With this prerequisite the contact contour may be expressed as

r = aC(O), C(O) = 1, (24)

where, as shown in Fig. 2, a represents a reference contact radius in the direction 0 = O. At
axisymmetry C(O) == 1 and the unknown contact region may be simply determined by the
scalar value a but, in general, C(O) must be found independently and the validity of the
decomposition in (24) proven a posteriori.

To proceed in the spirit of the axisymmetric analyses by Stonikers and Larsson (1994)
and Biwa and Stonlkers (1995) pure kinematics is considered first with suitable a priori
scalings
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Xi = axj , (25)

Uj(Xb a) = Jia/(Xk) (26)

and

Bij(Xb a) = (Jija)eij(xk)' (27)

Thus the scaled variables are assumed to be independent of the representative radius
a which again has to be verified a posteriori.

With the scaled velocity field Ui(Xk) thus introduced, the inhomogeneous rate boundary
condition (22) now reduces to

(28)

which then formally corresponds to flat die indentation.
The resulting velocity field must, however, be integrated to satisfy the original dis­

placement boundary condition (18), viz.

(29)

Using polar coordinates and a variable transformation from t to a then by (24)

(30)

for any fixed (), with the current contact contour defined by (24).
Regarded as an integral equation for h = h(a) the solution to (30) is readily obtained

as

with the eigenfunction c"(() given by

( I)P f"" -eP
(() = C(() - p _u~ 1 dr.

(;(8) rP

(31)

(32)

To ensure a unique relation of the depth h for the contour by (31) it is required that

(33)

As a consequence by (16), (18) and (31) the displacements under the die may be written
as

(34)

and in particular at the contour "piling-up" or "sinking in" occurs whether eP(()(C(())P
exceeds unity or not by (24).

As only kinematics has been considered so far it remains to fully formulate the resulting
intermediate flat die problem and also to actually solve it. To this end further scaling of
stresses and strains may be introduced as
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(35)

(36)

(37)

(38)

(j _ a ae. a. == e.llmg.lln,
ij - 'a-'f.ij

(39)

from (19), (20), and (21), respectively, and the non-trivial boundary condition is given by
(28).

In particular by integration of (27) and a variable transformation by (31) the scaling
introduced in (36) may be rewritten as

f
<>O -

6. = pfY'-1 ~. dp,.
Ii M

(40)

This transformation procedure, as introduced by Biwa and Storakers (1995) for the
case of plastic flow theory, is of vital interest as integration in (40) may be carried out along
radial rays extending from points Xi, where p2 = XiXi' to infinity. In essence then the self­
similarity formulation at hand has replaced time and material history dependence by
spatially nonlocal dependence and transformed it to an intermediate flat die problem which
in turn will generate similarity solutions to the original indentation problem.

Thus by the scaling of rates of displacements and strains and straightforward cumu­
lative superposition using again the variable transformation by (31) there results

(41)

and

(42)

respectively, where the required integrations are to be carried along radial rays in analogy
with (40).

At interpretation of indentation tests the main interest concerns the dependence of the
resulting mean pressure on the indentation depth or the contact region. In the present
formulation then the scaling introduced by (35) first generates the total load L as

(43)

where the total contact area, A, is scaled as
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1
2 - 2

A = a2A = a2 " [C(B)] dB
o 2

(44)

remembering (24).
As a principal finding by (31), the indentation depth and the representative radius a

are separable and using also (33) the load may be expressed solely by aid of a as

2 [ 1 (a)p-1Jl/m[ 1 Pil(a)p-2Jl /n _ -L = a (Jo -- - --- - J(-(J33)dA.
cP(O) D cP(O) D D

(45)

Thus, the mean pressure (hardness) at indentation may be summarized, symbolically,
as

L [ ( )p-1Jl/m [ . ( )p-2Jl1nA = (Joct(m, n,p) f3m(m, n,p) ~ f3n(m, n,p)~ ~ (46)

where the combined parameters ct, 13m and f3n are, in general, functions only of the material
exponents m and n and of the indentation geometry represented by p and a weighted value
of F(B) , though not on the magnitude of indentation. Instead, the separable dependence on
the contact radius and its rate is quite clear from (46).

Thus it was described in some detail above how in the original indentation problem
involving a moving boundary space and time dependence could be transformed into a
stationary problem and where an indenter of arbitrary profile could be replaced by that of a
flat die. Accordingly there are evidently advantages connected with this approach, although
technical entanglements might unfold when explicit solutions are aimed at in particular
cases. First in a general situation the shape of the contact contour is unknown and when it
comes to inelastic material behaviour and in particular, when hardening is at issue, the
reduced constitutive equation contains a nonlocal ingredient. The difficulties are by no
means unsurmountable though as will be explicitly demonstrated below.

3.3. Remarks on nonlinear elasticity and deformation theory ofplasticity
It was natural within the purely viscoplastic framework to apply a rate formulation

leading to the intermediate flat die problem to solve. In case of nonlinear elasticity or,
alternatively, deformation theory of plasticity, this theory is conventionally based on total
strain or deformation. The possibility to apply self-similarity at indentation has been drawn
upon also for such materials in case of power-law behaviour and small strains and was
applied by Hill et al. (1989) to fully solve the Brinell problem in particular with the view of
deformation theory of plasticity in mind. Subsequently indentation by a more general class
of profiles was discussed by Borodich (1989) and Storakers (1989), though still within
nonlinear elasticity.

Although a direct formulation based on total displacements was successfully applied
by Hill et al. (1989), there are reasons at least from a computational point of view to discuss
a competing rate formulation also at nonlinear elasticity. To this end the constitutive
equation then reads originally

(47)

and
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(48)

(49)

or, inversely,

(50)

where (1e = (1os;/m.

With this as a background it is now clear by analogy that a full solution may be
obtained by first solving the flat die problem with stress rates as primary variables and
subsequently apply cumulative superposition. Some qualitative conclusions may then be
drawn.

Save for linear elasticity which arises as a special case the tangent moduli in (49) or
(50) in general depend on total stress or strain. Thus with the reduced problem as a start it
will contain a nonlocal ingredient as in the case of strain-hardening plasticity above. In
contrast, however, in a total displacement formulation as used by Hill et al. (1989), the
problem must be solved for the displacements prescribed on the boundary for every specific
case as represented by the index p, while the corresponding flat die problem here may be
solved once and for all with p only constituting a parameter. Perhaps the main virtue of
the present rate formulation is, however, that the contact contour, through the eigenvalue
d', eqn (32), generating the invariant indentation depth, eqn (31), may be directly determined
by cumulative superposition implying integration, while in a total displacement formulation
a trial and error procedure to determine contour values has to be resorted to. The latter
was the case in the plastic deformation theory analysis by Hill et al. (1989) and would
persist also in an attempt to explicitly solve the corresponding creep problem posed by Hill
(1992) in the same spirit.

4. ILLUSTRATIVE APPLICATIONS

4.1. Ellipsoidal indentation of Newtonian fluids
In order to gain explicit insight in the procedure proposed it appears suitable to first

discuss a problem for which a nontrivial analytical solution may be expected. Such are,
with no known exceptions, confined to linear elastic or viscous solids with simple contact
contours like circles and strips but a genuinely three-dimensional case pertains to ellipsoidal
indentation. The latter problem has since long been analysed and resolved for the linear
elastic case, cr., e.g., Johnson (1985) or Hills et al. (1993) and is here reexamined to apply
to a linearly viscous half-space and in particular to illustrate the background and delineate
the formulae (32), (33) and (46) above.

The material law in question now reads

(51)

where J1. is the shear viscosity. This class of material behaviour is obtained as a special type
of that considered presently, with m .... 00, n = 1 and (10 = 3J1. in (21).

The indenter profile is assumed to be locally ellipsoidal, and as in (15) withp = 2,
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f= Axi +Bx~, A,,:;; B

F«()) = cos2()+(BIA) sin2
(), A = liD,

(52)

(53)

(54)

with notation as in Fig. 2.
With the strategy outlined above, the problem at hand is first reduced to flat indentation

of an incompressible linear elastic half-space though yet with an unknown contact contour,
C«()) to be determined. To proceed, in general, an initial conjecture is needed at the outset
and to be refined to satisfy the requirement (33). Here, it is reasonable to assume that the
conto)is given by an ellipse, with the unit major axis in the xl-direction and the minor
one 11 l-e2 in the x2-direction, where e is the eccentricity of the ellipse to be determined.

The solution to the stated reduced elastic Boussinesq flat die problem is known since
the time of Hertz and the reduced vertical displacement on the free surface, U3 = u31h, reads,
cf. Johnson (1985, p. 64),

(55)

where Xo= xola and K(e) is the complete elliptic integral of the first kind with the modulus
e and A] is the positive solution of

(56)

Equations (55) and (56) are then to be substituted into the formula (32) and the
condition (33) imposed. In doing so (32) is first rewritten by partial integration as

f
oo dU3 1

cP «()) = - -_ -dr.
(;(9) dr rP

(57)

Then when p = 2 and with C«()) = cos2()+ (1-e2
) sin2() implied by the assumption

made, substitution of (55) and (56) into (57) readily yields

cos
2

() sin
2

() {E(e) }c2 «()) =--{K(e)-E(e)}+-- ---K(e) ,
e2K(e) e2K(e) l-e2

where E(e) is the complete elliptic integral of the second kind.
In order for (58) to satisfy (33), it is required for any () that

2 A. 2 _ 2 E(e)/(1-e2)-K(e). 2()

cos ()+ li sm () = cos ()+ K(e)-E(e) sm,

(58)

(59)

and, accordingly, when given the indenter parameters A and B in the original problem, the
unknown contour parameter (eccentricity of the contact ellipse) e must be chosen as
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A K(e)-E(e)
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(60)

to satisfy (59).
Thus, it is seen that the sought-for contour is indeed an ellipse, which shape complies

with the above formula. Moreover, for the indentation depth h and the contact size a, the
relation from (31) follows as

e2K(e) a2

h(a) = K(e) -E(e) D' (61)

with e given by (60).
The stress field may now be directly obtained from the flat die solution and other

variables such as total displacements for the original curved die problem follow as well
when supplemented by cumulative superposition as in (41) and (42) although details are
suppressed here.

The pressure distribution in the contact region is found to be, drawing upon the linear
elastic solution,

in the scaled form, where the central value is given by

N 2 1
Po =

3K(e)~'

Likewise, the reduced load is

- J - 4 1tL= pdA=--
3 K(e)'

Then, with the introduced scaling, the total load for the original problem is

or by using (61) and with 0"0 = 3j.l,

8ne2 a2a
L = K(e)-E(e)J1Ii'

(62)

(63)

(64)

(65)

(66)

Thus the relation between the load and the impression magnitude or the contact area
depends on the factor e, which in turn is determined by the shape of the ellipsoidal punch
according to (60). In the limit when the punch becomes locally spherical, Le., as e ..... 0, by
the use of formulae

limK(e) = limE(e) = n/2,
e-+O e-O

lim (K(e) - E(e))/e2 = lim(E(e) - (l-e2 )K(e))je2 = n/4,
e-+O e-O

the obtained results reduce to

(67)

(68)
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(69)

(70)

For the degenerate case of spherical indentation the results are in conformity with well
known expressions from viscoelastic contact theory, in the limiting case of vanishing
elasticity, as reviewed by Johnson (1985, p. 192).

Turning back now to a general case of an ellipsoidal punch, indentation of the viscous
half-space by a prescribed constant load, say, implies growth of the contact region given
by (66), i.e.,

~ (a
3

) = K(e)-E(e) 3L
dt D e2 81tJi .

From a virgin state, a(O) = 0, (71) may be integrated to yield

3()1 _ K(e) - E(e) 3L
a t D - 8 t,

e2 1tJi

i.e., the contact radius grows in scale as t l
/
3 under a constant load.

(71)

(72)

4.2. Spherical indentation ofviscoplastic solids
As has already been emphasized, spherical indentation is of interest in many appli­

cations. For one thing the classical Brinell test, although being of metallurgical origin, has
attracted many investigators from a mechanics point of view. More recently, the main
features have been analysed in detail for deformation theory of plasticity by Hill et al.
(1989) and in the present spirit by Biwa and Stonlkers (1995) for plastic flow theory and
by Storakers and Larsson (1994) for stationary creep. In the present viscoplastic setting the
two limiting cases then reduce to rate independent strain-hardening solids and power law
viscous solids respectively.

As to the degree of increasing complexity the special case of power law stationary
creep, i.e., m -+ 00 eqn (6), was solved by Storakers and Larsson (1994) for a spherical
indenter, the Brinell problem, as illustrated in Fig. 3a. The corresponding reduced problem
then relates to a nonlinear elastic solid indented by a flat circular punch, Fig. 3b, which is
a version of what in the creep context is known as Hoff's analogy (Hoff 1954). A finite
element procedure was devised and the problem solved for a range of power law exponents

(a) (b)

0d

.--.. r "31""'-:'
II XI
1-

yz yz
I I
I 1_
, X3 ,x3

Fig. 3. Spherical Brinell indentation and the related flat die Boussinesq problem.
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50o

2

Fig. 4. Complete finite element mesh, pia"; 50, designed for the reduced flat die problem with
details in the region pia;;; 2.

and, in particular, for n -+ 00 when perfect plasticity applies. Although the solution involves
a singularity at the contact boundary similar to an HRR crack tip field (Hutchinson 1968,
Rice and Rosengren 1968), no fundamental difficulties were encountered but instead it
proved advantageous in particular to determine the contact boundary, i.e., the eigenvalue
c2

, by a cumulative procedure as in eqns (31), (32) above withp = 2 and C(lJ) and F(lJ) set
to unity. The Brinell problem was subsequently attacked by Biwa and Stonikers (1995) but
now by plastic flow theory, i.e., n -+ 00 eqn (6), as a basis. Then as strain-hardening is
present a nonlocal as well as a nonlinear constitutive law needs to be coped with in the
reduced problem in particular with eqns (39) and (40) above in mind. This difficulty was,
however, readily resolved by a finite element procedure with 13,882 degrees of freedom
where an iterative procedure was used to determine the accumulated strain by integration
along radial rays. The finite element mesh originally designed by Biwa and Storakers (1995)
is shown in Fig. 4 and the associated computational strategy was followed closely here
involving no further fundamental difficulties.

When analysing the general case here for a sphere, p = 2, the reduced constitutive
equations (39), (40) read

(73)

where, accordingly, incompressibility has been assumed and the Levi-Mises flow rule
adopted. With the earlier computational procedures as described above by Storakers and
Larsson (1994) for creep and, in particular, for plastic flow, with hereditary behaviour
present as in (73h, by Biwa and Storakers (1995), to investigate the fully viscoplastic case
is a fairly straight-forward procedure. It was found by both Storakers and Larsson (1994)
and Biwa and Storakers (1995) that, at large values of nand m, respectively, deformation
will localize, which might cause convergence problems. An immediate remedy was, however,
to reduce the finite element mesh in Fig. 4. In this case the complete mesh, P= 50,
was used for 1/m+ lin ~ 0.25 while for 0.1 ~ 1/m+ lin ~ 0.25 the remote boundary was
reduced to p = 10. No significant differences of results appeared at the mesh reduction.
Convergence proved to be especially sensitive to the power law exponent m and it proved
efficient for higher m-values in the iteration procedure to use a parameter tracking strategy
starting at m = 1.

It is not the present intention to carry out a detailed parameter study but instead some
representative results and formulae, believed to be of practical concern, will be displayed
based on the finite element results. Thus the surface shape of a deformed half-space is a
true characteristic of the hardening properties. With the eigenvalue c2(m, n) in mind the
profile under a spherical indenter may be written according to eqn (34) as
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(74)

and it is obvious that the resulting transverse displacement at the contact contour is above
the original surface when c2 > 1, piling-up, and below, sinking-in, otherwise. It has long
been known for a variety of experimental observations, cf., e.g., Norbury and Samuel
(1928), that the residual plastic impression remains below the surface for annealed metals
and alloys at approximately m = 3 while at various degrees of cold work piling-up occurs.

The invariant c2(m, n) is thus of primary importance remembering both the fun­
damental kinematic result (31) and the elucidated indentation depth eqn (74). It has been
determined here based on the viscoplastic solution of the reduced stationary problem
supplemented by cumulative superposition and results are shown in Fig. 5 as function of
the power-law exponents m and n. Earlier findings for the purely plastic strain-hardening
case, n -.. 00, by Biwa and Stonikers (1995) for flow theory and by Hill et al. (1989) for
deformation theory are also depicted together with the pure creep case, m -.. 00, by Storakers
and Larsson (1994).

In their analysis based on plastic flow theory, it was observed by Biwa and Stonikers
(1995) that to a very close agreement c2(m) = c2(n) as compared to the creep results by
Storakers and Larsson (1994). As a consequence the presently determined combined cases
are here plotted as a function of 11m + lin and it is rather striking that within a very good
accuracy c2 = c2(1/m+ lin). Some further background to this pragmatic finding may be
found from eqn (73). Thus if £e = l" then the field equations are fully satisfied as a single
function of l/m+ lin which for one thing generates the resulting c2-value. For this to be
exact, however, partial proportional effective straining, viz. se = (hla)g(hla)e" 9 being an
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Fig. 5. Relative height c2 _1 = -u3lh above the contour as function of I/m+ lin at spherical
indentation of viscoplastic materials. General viscoplasticity, present results, (0) m = n, (V) m > n,
(f'::..) m < n, (- m) plastic flow theory, Biwa and Storakers (1995), (- n) creep theory, Storakers

and Larsson (1994), (- - -m) deformation theory of plasticity, Hill et al. (1989).
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Fig. 6. Deformed surface shape at spherical indentation of viscoplastic materials for I/m+ lin = I,
1/3, 1/10. (-) general viscoplasticity (m = n) present results, (- - -) plastic flow theory (n -> 00) Biwa

and Stonikers (1995), (_. -) creep theory (m -> 00) Storakers and Larsson (1994).

arbitrary function, is required as may be readily seen from (73h remembering (27) and
(40).

From the set of values shown in Fig. 5, it may be observed that at ljm+ ljn ;:::; 1j3
there is a transition from sinking-in to piling-up. Similar results have also been determined
based on the asymptotic procedure by Ogbonna et al. (1995). The agreement is good in
general although all their c-values fall below the present ones by about 5%.

As to field results it has been shown earlier by Biwa and Storlikers (1995) for strain­
hardening plasticity that effective strain trajectories are indeed similar to the corresponding
ones for creep, Stonikers and Larsson (1994). Here some representative deformed profiles
are shown in Fig. 6. Thus it may be observed that again the results essentially depend only
on ljm+ 1jn. In particular for high values of the exponents pronounced piling-up occurs
at the contact edge. The very refined finite element mesh in the vicinity of the contact
boundary as shown in Fig. 4, was in fact designed in particular to resolve the almost
singular behaviour exhibited.

The mean pressure as given by eqn (46) for a spherical die, p = 2, reduces to

L [(a)]l/m [ ti]l/n
na2 = O'ori(m, n) f3m(m, n) D f3n(m, n) D (75)

where again the combination of parameters ri, 13m, f3n is to be determined from the flat die
solution followed by cumulative superposition.

Earlier results have given for m, n individually, Biwa and Storakers (1995) and Stor­
akers and Larsson (1994), respectively. Obviously for m, n .... 00 the values for the reduced
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Fig. 7. Reduced mean pressure L as function of Ilm+ lin at spherical indentation of viscoplastic
materials. General viscoplasticity, present results, (0) m '= n, (\7) m > n, (6) m < n, (x) plastic
flow theory n -+ ro, Biwa and Storakers (1995), (0) creep theory m -+ ro, Stonikers and Larsson
(1994), (*) deformation theory of plasticity n -+ ro, Hill et al. (1989), (-) present fit for general

viscoplasticity (eqns (76, 78)).

load coincide as for perfect plasticity while for rn, n = 1 a factor 3 is approximately at
variance and exact only for linear elasticity in contrast to homogenity of degree one.

Thus it proved useful here to introduce a factor (n+2)ln in analogy with (45) to scale
the results as

L _ n+2 (a)llm(iJ)l/n_
----ao - - L
na2 n D D

(76)

based on the reduced field equations to determine L(rn, n).
The corresponding outcome is shown in Fig. 7 where the reduced mean pressure is

again shown as a function of l/rn+ lin. By introduction of the factor (n+2)ln in (76) it
may be seen that the reduced load is also here virtually governed by the combined power
law exponents. The corresponding results for deformation theory of plasticity by Hill et al.
(1989) are also shown for comparison. Presently if choosing, in eqn (45),

IX = 3, 13m = (nln +2Y13n = 1/3 (77)

it may be seen in Fig. 7, that an overall very good fit results for l/rn+ lin < 0.5, say. The
corresponding hardness formula



Similarity analysis 3079

2.5 ,--------,----,-------,------,---n---n

/"
_~ _ /".;;v

• -- "l/m+ l/n = 1/3

I I

I _I

I

I

I

I

/

I

/

/
/

/'

/'

/'
/'

/
/'

/
/'

/'
/

/'
/'

/'

,//I/n1+I/n=1
/'

2.0

1.5

p (r)

p(O)

m = I .. -'. In = 10

0.5

1.00.80.60.40.2
0.0 L-__-----'l.-__--' --'- ~ _'

0.0
ria

Fig. 8. Nonnalized contact pressure distribution at spherical indentation of viscoplastic materials
for I/m+ lin = I, 1/3, 1/10. (-) General viscoplasticity (m = n) present results, (---) plastic flow
theory (n -+ (0) Biwa and Storakers (1995), (_. -) creep theory (m -+ (0) Storiikers and Larsson

(1994), (...) defonnation theory of plasticity (n -+ (0) Hill et al. (1989).

~ = 3(n+2) (To (~)llm(~)l/n
na2 n 3D 3D

(78)

is then believed to be practically useful in general circumstances. Based on empirical findings
Tabor (1951) proposed for strain-hardening plasticity, in his now celebrated formula, that
the present parameters may be adopted as constants and specifically here IX = 2.8 and
13m = 0.4.

Finally, some typical pressure distributions are shown in Fig. 8. Also in this case it
may be seen that the results are essentially governed by 11m + 1In, at least at smaller values,
when employing the full constitutive equation. Some results based on the deformation
theory of plasticity by Hill et al. (1989) are also shown but are at variance reducing to
almost Hertzian distributions. However, as was observed in Fig. 7, the difference in mean
pressure is much less divergent.

The only real computational difficulty not considered in detail here from a fundamental
point of view concerns determination of the shape of the contact contour corresponding to
eqn (24) above in genuinely three-dimensional situations. Thus the contour must be deter­
mined as to satisfy eqns (32) and (33) above. As in the iteration procedure used already it
would seem natural to start with an additional initial conjecture based on the indenter
cross section and the corresponding axisymmetric results say, and then use (32) for an
approximate velocity field in order to successively refine the contour so that (33) is finally
satisfied. No explicit computational algorithm is proposed here but left open for further
exploration.
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h

-------

0'1

Fig. 9. Contact at two solids, k = 1,2, with material constants Uk and profile parameters 1"k)(8), Dk,
respectively.

5. GENERAL CONTACT BETWEEN SEVERAL BODIES

The analysis displayed so far has been confined to the problem of a curved rigid die in
contact with a deformable half-space for the primary reason to bring out the basic ideas as
simply as possible. Although the explicit results discussed are of immediate interest as
regards indentation testing, it was forecast that more general results could be accomplished
by a simple generalization. Thus in case of two or more deformable bodies interacting, such
as the asperity and compaction problems sketched in Fig. I, no fundamental difficulties
will arise when applying the present framework to solve also such combined cases. A
compaction problem has recently been analysed by Larsson et al. (1996) for an arbitrary
number of contacts but as the adopted Hertzian approach is a local one it suffices here to
discuss the interaction between two bodies as has been earlier well established in linear
elasticity.

Relating to the background above it is assumed that the two bodies have the same
constitutive potential structure and homogeneity properties, i.e., m and n, and also that
their profiles have the shape exponent p in common save for the single case when one
body is flat, p ~ 00, and the other arbitrary as above. Otherwise there are no restrictions
concerning material constants and surface properties.

With this setting, the field equations will be essentially unaffected and it appears natural
to assume ad hoc, with variables introduced in Fig. 9, that

(79)

where G'i? is the fundamental half-space solution and accordingly continuity of traction at
the contour as well as equilibrium is fulfilled.

Then, by scaling displacements correspondingly as

(80)

where l/q = l/m+ l/n, then the complete field equations are individually satisfied.
It remains to satisfy the nonhomogeneous boundary condition, eqn (18), which now

reads
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Thus, by introducing (80) in (81) and choosing

and

1 1 1
-=-+-
a~ aj ai

(82)

(83)

then (81) reduces to (18) and consequently the original problem of a half-space is recovered
from the conjectured fields in the two-body problem.

As regards the contact between nontrivial contours manifested by C(e), it is necessary
to first determine the eigenfunction ePee) at indentation of two deformable solids. Again,
the procedure will be unaffected as referred to the fundamental problem if in eqn (31)
F(e)jIY'-1 is replaced by

F(e) F(l)(e) F(2)(e)
--=--+--
DP-l DI(-l Di~l

(84)

with the notation as in Fig. 9. It may be pointed out in relation to eqn (84) that there are
no restrictions that the solids should be convex once the contact is local and smooth.

Thus with the generalization briefly explained here, the fundamental relations between
contact depth and size as in eqn (31) and between mean pressure and the contact radius,
eqn (70), now run as before. Results for the two-body problem may then be readily extracted
from the fundamental half-space solution. Some explicit applications for spheres ofdifferent
rigidities and sizes related to composite compaction problems have recently been inves­
tigated by Stonikers (1996).

6. CONCLUDING REMARKS

Some general features of self-similarity at contact of linear and nonlinear solids were
introduced and discussed in some detail. Thus in cases when both material properties and
surface profiles are expressed by aid of homogeneous functions it was shown that the
solution to associated problems can be scaled by simple transformation laws. This proved
advantageous both from analytical and numerical points of view as the scaling clarifies the
dependence of solutions on governing parameters and time in a readily applicable form
and reduces an original problem of a moving boundary to a stationary one. From a
computational point of view this is favourable and it was further shown that by relying
upon an intermediate reduced problem of flat contact the original problem may be simply
solved by cumulative superposition. The only price to be paid when reducing the problem
to a stationary one is that when material history dependence prevails it will be replaced by
nonlocality of the constitutive behaviour. This proved to be no main obstacle, however, as
an efficient computational algorithm was devised and its virtues proven by explicit solutions
based on general viscoplastic theory. Instead it is believed that the fundamental framework
proposed will favourably facilitate procedures at treatment of a wide variety of contact
problems in practice and may apply to two-dimensional situations as well with only a slight
modification.
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